api.samples package¶
Submodules¶
api.samples.box_2d module¶
api.samples.box_3d module¶
api.samples.echo module¶
-
class
api.samples.echo.
Echo
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.sample.Sample
Sample from a single data package provided by a LCAx sensor. See pioneer.common.clouds.to_echo_package() to create a similar data package from scratch.
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
amplitude_img
(options='max_amplitude', dtype=<class 'numpy.float32'>, extrema=None)¶
-
property
amplitudes
¶
-
cache
()¶
-
channel_index_to_image_coord
(index)¶
-
clip_to_fov_mask
(pts: numpy.ndarray) → numpy.ndarray¶
-
property
data
¶
-
distance_img
(options='min_distance', dtype=<class 'numpy.float32'>, extrema=None)¶
-
property
distances
¶
-
property
flags
¶
-
get_cloud
(referential: str = None, ignore_orientation: bool = False, undistort: bool = False, reference_ts: int = -1, dtype: numpy.dtype = <class 'numpy.float64'>)¶
-
property
h
¶
-
image_coord_to_channel_index
(row, col)¶
-
property
indices
¶
-
property
mask
¶
-
property
masked
¶
-
other_field_img
(field, dtype=<class 'numpy.float32'>)¶
-
point_cloud
(referential: str = None, ignore_orientation: bool = False, undistort: bool = False, reference_ts: int = -1, dtype: numpy.dtype = <class 'numpy.float64'>)¶ Compute a 3D point cloud from raw data
- Parameters
referential – The target sensor referential or full datasource name
ignore_orientation – Ignore the source sensor orientation (default: {False})
undistort – Apply motion compensation to 3d points.
reference_ts – (only used if referential == ‘world’ and/or undistort == True), refer to compute_transform()’s documentation
dtype – the output numpy data type
-
quad_cloud
(referential=None, ignore_orientation=False, undistort=False, reference_ts=-1, dtype=<class 'numpy.float64'>)¶ Compute a 3d surface cloud from raw data (quads made of 2 triangles)
- Parameters
referential – The target sensor referential or full datasource name
ignore_orientation – Ignore the source sensor orientation (default: {False})
undistort – Apply motion compensation to 3d points.
reference_ts – (only used if referential == ‘world’ and/or undistort == True), refer to compute_transform()’s documentation
dtype – the output numpy data type
-
property
raw
¶
-
property
specs
¶
-
property
timestamps
¶
-
property
v
¶
-
api.samples.echo_xyzit module¶
-
class
api.samples.echo_xyzit.
EchoXYZIT
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.xyzit.XYZIT
Similar data structure than XYZIT sample. However, this sub-class should be used instead if the sensor is a LCAx instance.
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
point_cloud
(referential=None, ignore_orientation=False, undistort=False, reference_ts=-1, dtype=<class 'numpy.float64'>)¶ Compute a 3D point cloud from raw data
- Parameters
referential – The target sensor referential or full datasource name
ignore_orientation – Ignore the source sensor orientation (default: {False})
undistort – Apply motion compensation to 3d points.
reference_ts – (only used if referential == ‘world’ and/or undistort == True), refer to compute_transform()’s documentation
dtype – the output numpy data type
-
api.samples.fast_trace module¶
-
class
api.samples.fast_trace.
FastTrace
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.trace.Trace
Derivation of Trace sample, for Pixell sensors. Two distinct sets of waveforms are contained in the raw data dictionnary, under the keys ‘high’ and ‘low’.
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
property
max_range
¶
-
processed
(trace_processing: Callable)¶
-
processed_array
(trace_processing: Callable)¶
-
property
raw
¶
-
property
raw_array
¶
-
api.samples.image module¶
-
class
api.samples.image.
Image
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.sample.Sample
RGB data from a single camera image
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
property
camera_matrix
¶
-
property
distortion_coeffs
¶
-
project_pts
(pts, mask_fov=False, output_mask=False, undistorted=False, margin=0)¶ projects 3D points from camera referential to the image plane.
- Parameters
- (undistorted) –
- –
- –
- –
margin (optionnal) – margin (in pixels) outside the image unaffected by the fov mask
-
projection_mask
(pts, projection, margin=0)¶
-
raw_image
()¶
-
property
und_camera_matrix
¶ the undistorted new camera matrix
-
undistort_image
()¶
-
api.samples.image_cylinder module¶
-
class
api.samples.image_cylinder.
ImageCylinder
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.image.Image
Image derivation that was transformed by a cylindrical projection
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
project_pts
(pts, mask_fov=False, output_mask=False, undistorted=False, margin=0)¶ project 3D in the 2D cylindrical referiencial
- Parameters
pts – 3D point in the center camera referential (3xN)
mask_fov (optionnal) – removes points outside the fov
output_mask (optionnal) – if True, returns the mask applied to the points
undistorted (=False) – Does nothing in the case of ImageCylinder, as it is always undistorted
margin (optionnal) – margin (in pixels) outside the image unaffected by the fov mask
- Returns
2D points in cylindrical image referential mask (optionnal): returned if output_mask is True
- Return type
2xN
-
undistort_image
()¶
-
api.samples.image_fisheye module¶
-
class
api.samples.image_fisheye.
ImageFisheye
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.image.Image
A derivation the Image sample, to be used with fisheye lenses.
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
project_pts
(pts, mask_fov=False, output_mask=False, undistorted=False, margin=0)¶ projects 3D points from camera referential to the image plane.
- Parameters
- (undistorted) –
- –
- –
- –
margin (optionnal) – margin (in pixels) outside the image unaffected by the fov mask
-
undistort_image
()¶
-
api.samples.lane module¶
api.samples.poly_2d module¶
api.samples.rpm module¶
-
class
api.samples.rpm.
RPM
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.sample.Sample
Rotations per minute measured by wheel encoders (left and right channels)
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
meters_per_second
()¶
-
api.samples.sample module¶
-
class
api.samples.sample.
Sample
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
object
-
LUT
= {}¶
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
compute_transform
(referential_or_ds: str = None, ignore_orientation: bool = False, reference_ts: int = -1, dtype=<class 'numpy.float64'>) → numpy.ndarray¶ Compute the transform from this Sample sensor to another sensor referential.
By default the transform between the two sensors reference frames include the contribution from the orientation member. If ones wishes to ignore this contribution it can set the ignore_orientation parameter to True.
- Parameters
referential_or_ds – The other sensor name or full datasource name, e.g. flir_tfc or flir_tfc_img (default: {None})
ignore_orientation – Ignore the source sensor orientation (default: {False})
reference_ts – (only used if referential_or_ds == ‘world’), the timestamp at which we want to ‘jump’ from EgomotionProvider’s referential (e.g. the IMU) to the to ‘world’ referential. Also note that the ‘world’ referential is actually EgomotionProdiver’s referential at some reference time ‘t’ (refer to your actual EgomotionProvider’s configuration, by default ‘t’ is EgomotionProvider’s initial timestamp). ‘world’ referential is thus commonly refered to as the ‘EgoZero’ referential
dtype – the output numpy data type
- Returns
The [4, 4] transformation matrix
-
property
extrinsics
¶
-
property
intrinsics
¶
-
property
label
¶
-
property
orientation
¶
-
pretty_print
()¶
-
property
raw
¶
-
property
sensor_type
¶
-
property
time_of_issues
¶
-
property
timestamp
¶
-
transform
(pts: numpy.ndarray, referential_or_ds: str, ignore_orientation: bool = False, reference_ts: int = -1, reverse: bool = False, dtype=<class 'numpy.float64'>) → numpy.ndarray¶ Transform 3D points from this Sample sensor to another sensor referential.
- Parameters
pts – The [N, 3] points to be transformed
referential_or_ds – The target sensor referential or full datasource name
ignore_orientation – Ignore the source sensor orientation (default: {False})
reference_ts – refer to compute_transform()’s doc (only used if referential_or_ds == ‘world’)
reverse – apply the reverse transformation
dtype – the output numpy data type
- Returns
The transformed points
-
transform_image
(image)¶
-
static
transform_pts
(matrix4x4, ptsNx3)¶
-
undistort_points
(pts_Local_batches: list, timestamps: numpy.ndarray, reference_ts: int = -1, to_world: bool = False, dtype=<class 'numpy.float64'>)¶ Transform 3D points that have not been sampled simultaneously to their ‘correct’ place referential.
- Parameters
pts_Local_batches – a list of arrays of [N, 3] points to be transformed
timestamps – the N timestamps (common for all point batches)
to_world – If ‘True’, leave undistorted points in ‘world’ referential, otherwise project them back to local referential
reference_ts – only used if to_world == False, let the use chose at what time undistorted points are projected back to the local referential (useful to compare points from different sensors in a common local referential)
dtype – the output numpy data type
- Returns
The transformed points
-
-
api.samples.sample.
warn_if_less_than_64bit
(dtype: numpy.dtype)¶
api.samples.seg_2d module¶
api.samples.seg_2d_image module¶
api.samples.seg_3d module¶
api.samples.trace module¶
-
class
api.samples.trace.
Trace
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.sample.Sample
Trace (or waveform) data from a single LCAx package
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
property
max_range
¶
-
processed
(trace_processing: Callable)¶
-
processed_array
(trace_processing: Callable)¶
-
property
raw
¶
-
property
raw_array
¶
-
static
saturation_flags
(traces)¶
-
property
specs
¶
-
property
timestamps
¶
-
api.samples.xyvit module¶
-
class
api.samples.xyvit.
XYVIT
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.xyzit.XYZIT
Point cloud in bird eye view plane provided by a radar sensor. For each data point, contains (x,y) coordinates, the relative radial velocity (v), the intensity (i) and a timestamp (t).
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
point_cloud
(referential=None, ignore_orientation=False, undistort=False, reference_ts=-1, dtype=<class 'numpy.float64'>)¶ Compute a 2D BEV point cloud from raw data
-
api.samples.xyzit module¶
-
class
api.samples.xyzit.
XYZIT
(index, datasource, virtual_raw=None, virtual_ts=None)¶ Bases:
pioneer.das.api.samples.sample.Sample
Point cloud provided by a mechanical lidar sensor. For each data point, contains (x,y,z) coordinates, the intensity (i) and a timestamp (t).
-
__init__
(index, datasource, virtual_raw=None, virtual_ts=None)¶ virtual_raw and virtual_ts are meant for samples which dont exist in a physical datasource. For example interpolated samples, or samples derived from other samples.
-
property
amplitudes
¶
-
property
distances
¶
-
get_cloud
(referential=None, ignore_orientation=False, undistort=False, reference_ts=-1, dtype=<class 'numpy.float64'>)¶
-
point_cloud
(referential=None, ignore_orientation=False, undistort=False, reference_ts=-1, dtype=<class 'numpy.float64'>)¶ Compute a 3D point cloud from raw data
- Parameters
referential – The target sensor referential or full datasource name
ignore_orientation – Ignore the source sensor orientation (default: {False})
undistort – Apply motion compensation to 3d points.
reference_ts – (only used if referential == ‘world’ and/or undistort == True), refer to compute_transform()’s documentation
dtype – the output numpy data type
-
property
timestamps
¶
-